This site uses cookies.
Some of these cookies are essential to the operation of the site,
while others help to improve your experience by providing insights into how the site is being used.
For more information, please see the ProZ.com privacy policy.
Deutsch > Englisch: Druckverfahren General field: Technik Detailed field: Druck und Satz, Verlagswesen
Ausgangstext - Deutsch HOCHDRUCK
Der Hochdruck hat seinen Namen von der Art und Weise wie der Druckaufbau positioniert ist. Im 15. Jahrhundert entwickelte Johannes Gutenberg dieses Druckverfahren, bei dem die Druckelemente auf der Druckplatte aufliegen und hervorstehen. Das bedeutet, dass dort, wo Bildstellen entstehen, die Druckform höher liegt als an Bereichen die frei bleiben. Der klassische Stempel ist ein erklärendes Beispiel für den Hochdruck.
FLEXODRUCK
Auch der Flexodruck ist eine Art des Hochdrucks. Hierbei besteht die Druckform aus einer flexiblen Fotopolymerplatte. Wir bieten Fotopolymerplatten von 0,76 bis 6,35 mm Stärke im Maximalformat an. Anwendungsgebiete des Flexodrucks sind vor allem Folie und Sleeve, also das Trägermaterial, auf welches die Druckplatten montiert werden. Diese Zwischenträger sind notwendig, damit die Druckformen auf die Druckzylinder der Flexo-Druckmaschine montiert werden können. Gerade hierbei gibt es hohe Anforderungen an die Druckform, auf deren Perfektionierung und Montage wir uns spezialisiert haben.
TIEFDRUCK
Der Tiefdruck ist ein Druckverfahren, bei dem die druckenden Elemente vertieft liegen. Die Vertiefungen, in denen sich die Druckfarbe befindet, nennt man Näpfchen. Die nichtdruckenden Elemente werden als Stege bezeichnet. Beim Druckvorgang wird der Druckformzylinder mit Farbe überzogen und die überschüssige Farbe mit einem Rakel abgestreift. Dadurch befindet sich die Druckfarbe nur noch in den Näpfchen, also in den vertieften Bereichen des gravierten Druckformzylinders, die dann letztlich drucken. Durch Pressdruck erfolgt die Übertragung der Farbe auf das zu bedruckende Material. Die Übertragung der Farbmenge ist abhängig von der jeweiligen Tiefe der gravierten Näpfchen.
FLACHDRUCK
Im Bereich Flachdruck haben wir uns auf Druckplattenherstellung für die Bereiche Offsetdruck und Trockenoffsetdruck spezialisiert.
FLACHDRUCKVERFAHREN
Flachdruckverfahren basieren auf den unterschiedlichen physikalischen Eigenschaften von Wasser und Fett. Beim Flachdruck liegen die zu druckenden und die druckfreibleibenden Teile fast auf einer Höhe. Der Druckstock, auf dem die Farbe aufgetragen wird, wird chemisch vorbehandelt. An den farbgebenden Stellen, muss der Druckstock fettig sein und somit das Wasser abstoßen. Wodurch die nicht druckenden Stellen Wasserannahme fähig sind. Denn nur auf fetthaltigen Flächen haftet die fett- und ölhaltige Farbe. Wasserhaltige Flächen stoßen die Farbe ab. Auf diese einfache Weise gelingt es, dass die Farbe nur auf den zu druckenden Flächen haftet.
OFFSETDRUCK
Der Offsetdruck ist eine Form des indirekten Flachdrucks. Zwischen dem Druckstock und dem zu bedruckenden Objekt liegt ein Gummituch. Deshalb wird nur „indirekt“ gedruckt. Dieses Gummituch ist das Übertragungsmittel und schont das zu bedruckende Objekt. Dadurch, dass letztlich mit dem Gummituch gedruckt wird, nutzt sich die Farboberfläche des Druckstocks weniger schnell ab. So ist der Offsetdruck ein zügiges und kostengünstiges Druckverfahren.
TROCKENOFFSETDRUCK
Trockenoffsetdruck, oder auch wasserloser Offsetdruck genannt, stellt eine Sonderform des Flachdrucks dar. Hierbei wird reine Farbe verwendet. Der Farbauftrag verläuft auch hier indirekt, wobei auf die farbführenden Flächen der Druckplatte Farbe kommt und die nichtdruckenden Bereiche farblos bleiben. Durch die Nutzung von Oberflächenspannungen gelingen mit dem Trockenoffsetdruck hochwertige und sehr fein gezeichnete Druckergebnisse.
Übersetzung - Englisch RELIEF PRINTING
Relief printing takes its name from the way in which the print surface is created. This printing method was developed in the 15th century by Johannes Gutenberg; in it the print elements lie on top of the printing plate and stand out from it. This means that the printing plate stands higher in those areas that contain the image than in the areas that remain free. The classic rubber stamp is an example of relief printing.
FLEXOGRAPHY
Flexography is also a form of relief printing. The printing plate consists of a flexible photopolymer printing plate. We supply photopolymer plates, 0.76 to 6.35 mm thick, maximum format. The main application fields for flexography are films and sleeves, in other words the supports on which the printing plates are mounted. These intermediate carriers are necessary to enable the printing plate to be mounted on the cylinder of the flexographic printing press. This places very high demands on the printing plate, and we specialise in perfecting and mounting this.
INTAGLIO
Intaglio is a printing method in which the elements to be printed are incised into the surface. The sunken areas, which hold the printing ink, are called cells. The non-printing elements are known as land areas. In this printing process, the ink is applied to the cylinder and the excess ink is removed with a doctor blade. This leaves ink only in the cells, that is to say the sunken areas on the engraved cylinder, which then print. The pressure from the impression roller causes the ink to transfer onto the substrate. The amount of ink transferred depends on the respective depths of the engraved cells.
PLANOGRAPHIC PRINTING
In the area of planographic printing, our speciality is platemaking for offset printing and dry offset printing.
PLANOGRAPHIC PRINTING PROCESSES
Planographic printing processes are based on the different physical properties of oil and water. In planographic printing, the printing areas and the non-printing areas are practically level with each other. The plate is pre-treated chemically. It needs to be greasy, and thus repel water, in the areas that will transfer ink, while the non-printing areas attract and retain water. The ink, which contains grease and oil, only adheres to the greasy areas. The areas containing water repel the ink. This simple method ensures that the ink only adheres to the printing areas.
OFFSET PRINTING
Offset printing is a form of indirect planographic printing. A rubber blanket lies between the plate and the object to be printed on, which is what makes this printing only “indirect”. The rubber blanket acts as the transfer medium and protects the substrate from damage. Also, because it is the blanket that effectively does the printing, the plate's ink surface wears out less quickly. Offset printing is therefore a quick and economical print method.
DRY OFFSET PRINTING
Dry offset printing, also known as waterless printing, is a special type of planographic printing. Only ink is used in this. Ink transfer is indirect in this method, too. Ink is applied to the ink-receptive areas of the printing plate, and the non-printing areas remain ink-free. The exploitation of surface tensions leads to the production of high-quality and very precisely defined print results.
Ausgangstext - Deutsch Schlaganfall
Zu einem Schlaganfall (Apoplex, Hirnschlag, Hirninfarkt oder Insult) kommt es, wenn ein umschriebener Teil des Gehirns plötzlich keinen Sauerstoff mehr erhält. Es handelt sich um einen medizinischen Notfall, der umgehend von einem Arzt behandelt werden sollte. Schlaganfälle betreffen vor allem ältere Menschen – wichtigster Risikofaktor für einen Hirninfarkt ist ein zu hoher Blutdruck.
Hinweise auf einen Schlaganfall können sein:
• plötzliche Schwäche oder Verlust der Muskelkraft bis hin zur kompletten Lähmung einer Gesichts- oder Körperhälfte (halbseitige Lähmung)
• Taubheitsgefühl (gestörtes Berührungsempfinden), z.B. eines Arms
• Sprachstörungen (undeutliche Sprache, Verständigungsschwierigkeiten)
• Schluckstörungen
• Sehstörungen (plötzliche Sehverschlechterung, Sehen von Doppelbildern)
• Schwindel
• plötzliche Verwirrtheit oder depressive Grundstimmung
• Bewusstlosigkeit oder Benommenheit
• plötzlich auftretende, heftige Kopfschmerzen ohne bekannte Ursache (besonders bei Hirnblutung)
• Die genauen Symptome bei einem Schlaganfall richten sich danach, welche Region des Gehirns zu wenig Sauerstoff erhält. Treten die Symptome – auch neurologische Ausfälle genannt – nur vorübergehend und ohne bleibenden Schaden auf, kann es sich um eine Vorstufe eines Schlaganfalls handeln. Dann ist es wichtig, die Auslöser der Beschwerden zu identifizieren und mit einer geeigneten Therapie zu verhindern, dass es zu einem Schlaganfall kommt.
Mediziner unterscheiden grundlegend zwei Arten von Schlaganfall: Am häufigsten kommt der ischämische Insult vor. Dieser tritt auf, wenn ein Blutgefäß im Gehirn plötzlich durch ein Blutgerinnsel verschlossen wird (Hirnthrombose oder Hirnembolie). Im Gegensatz dazu führt in etwa jedem fünften Fall eines Schlaganfalls eine Hirnblutung zu einem sogenannten hämorrhagischen Insult.
Sowohl beim ischämischen wie auch beim hämorrhagischen Hirnschlag wird das betroffene Hirngewebe nicht mehr ausreichend durchblutet, erhält dadurch zu wenig Sauerstoff und stirbt ab.
Die Apoplex-Behandlung zielt in den ersten Stunden nach dem Hirnschlag darauf ab, die Sauerstoffversorgung der betroffenen Hirnregion wiederherzustellen, damit möglichst wenig Hirngewebe Schaden nimmt. Mediziner sprechen von "time is brain", was so viel bedeutet wie: Je schneller die Therapie erfolgt, desto mehr Hirngewebe lässt sich retten.
Ein Schlaganfall betrifft in etwa jedem zweiten Fall eine Person über 70 Jahre. Circa vier von fünf Betroffenen überleben in Deutschland einen ersten Schlaganfall. Der Verlauf hängt unter anderem davon ab, welche Bereiche des Gehirns geschädigt wurden und wie stark. Treten Komplikationen wie ein zweiter Hirninfarkt auf, verschlechtert sich die Prognose. Ein Hirnschlag ist eine ernstzunehmende Erkrankung, die in Deutschland neben Herz-Kreislauf- und Krebserkrankungen zu den häufigsten Todesursachen zählt.
Langfristig kann nach einem Schlaganfall eine konsequent durchgeführte Rehabilitation dazu beitragen, dass sich die Symptome wieder bessern oder sogar ganz verschwinden. Von einer frühzeitigen Rehabilitation profitieren besonders jüngere Menschen.
Betroffene mit starken körperlichen Beeinträchtigungen haben die Chance, zumindest einen Teil ihrer Fähigkeiten wiederzuerlangen. Die Rehabilitation hat außerdem das Ziel, Komplikationen und Folgeschäden zu vermeiden.
Übersetzung - Englisch What happens in a stroke?
A stroke (a ‘brain attack’ caused by a disturbance of the blood supply to the brain) occurs when a part of the brain suddenly doesn’t get any more oxygen. It is a medical emergency that requires immediate medical attention. Older people are most at risk – the most important risk factor for a stroke is high blood pressure (hypertension).
What are the symptoms to watch out for?
Indications that someone is having a stroke can be:
• sudden weakness or loss of muscular strength, possibly to the point where one side of the face or body might be completely paralysed (hemiplegia)
• numbness, for instance in one arm
• speech impairment (speech may be slurred, they may have difficulty understanding)
• difficulty swallowing (dysphagia)
• impaired vision (sudden loss or blurring of vision, double vision)
• dizziness
• sudden confusion or feelings of depression
• loss of consciousness or light-headedness
• a sudden and very severe headache without any recognisable cause. This is a symptom of brain haemorrhage in particular (this occurs when a blood vessel inside the skull bursts and bleeds into and around the brain).
The exact symptoms of a stroke depend on which area of the brain is receiving too little oxygen. If the symptoms (also known as a neurological deficit) are just temporary (or transient) and without any lasting damage, it may be that you are having a mini stroke, or TIA (transient ischaemic attack). A TIA is a warning that you are at risk of having a full stroke in the near future. It is important to identify the triggers for your symptoms, so that you can be given the right treatment to reduce the chances of this.
What are the causes of stroke?
There are two main types of stroke:
Ischaemic strokes
These are the most frequent and occur when a blood vessel in the brain is suddenly blocked by a blood clot (cerebral thrombosis or cerebral embolism).
Haemorrhagic strokes
In approximately 20% of strokes, the cause is bleeding in the brain.
With both ischaemic and haemorrhagic strokes, the affected brain tissue is not supplied with enough blood. As a result it receives to little oxygen and dies.
How is a stroke treated?
Immediate treatment
In the first few hours after a stroke, the treatment aims to restore the oxygen supply to the affected region of the brain, so that as little of the brain tissue is damaged as possible. Doctors use the expression “time is brain”, which essentially means: the faster the treatment is given, the more brain tissue can be saved.
Almost 50% of strokes occur in people over the age of 65. Approximately four out of five people affected survive a first stroke. Progression depends partly on which part of the brain was damaged and how badly. If complications occur, such as a second stroke, the probable outcome (prognosis) will be worse. A stroke is an illness that must be taken seriously, as it is one of the most common causes of death together with cancer and cardiovascular problems (conditions affecting the heart and blood vessels).
Rehabilitation
In the long term, consistently following a rehabilitation programme after a stroke can significantly contribute to the symptoms improving or even disappearing. The younger you are, the more you will benefit from early rehabilitation.
Even if you have suffered serious physical impairments, you have the chance to at least partially recover your abilities. Rehabilitation also has the goal of avoiding complications and secondary damage.
Deutsch > Englisch: Das Plastikproblem General field: Naturwissenschaften Detailed field: Umwelt und Ökologie
Ausgangstext - Deutsch Weniger wäre mehr
Bioökonomie alleine löst das Plastikproblem nicht
Plastik ist aus unserer heutigen Welt nicht mehr wegzudenken. Die weltweite Produktion von Kunststoff hat sich in den vergangenen 25 Jahren auf 300 Millionen Tonnen pro Jahr verdreifacht. Allerdings verursacht Plastik auch gravierende Umweltprobleme, vor allem im Meer. Selbst in abfallwirtschaftlich angeblich hochentwickelten Ländern wie Deutschland finden sich große Mengen von Kunststoffabfällen in der Natur wieder.
Die Verwendung von Kunststoffen ist eng verknüpft mit der massenhaften Verbreitung von Konsumgütern. Industrienationen mit spezialisierter Arbeitsteilung, und einer einkommensstarken Mittelschicht fragen erheblich mehr Kunststoffe nach als auf Subsistenz oder die Agrarproduktion spezialisierte Gesellschaften. Doch im Zuge der Globalisierung steigt die Nachfrage nach Plastik auch im globalen Süden. Insbesondere die stark wachsenden Schwellenländer in Asien gehören heute zu den größten Kunststoffproduzenten und -konsumenten.
Deutschland konsumiert und produziert in Europa die meisten Kunststoffe und beheimatet einige der mächtigsten transnationalen Chemiekonzerne. Mit der Entwicklung und dem Verkauf von Kunststoffen sind gigantische Umsätze und Gewinne verbunden. Die Branche wächst, eine Lösung für das Problem der Kunststoffabfälle gibt es hingegen nicht.
Tödliche Folgen
Die ökologischen Auswirkungen von Plastikabfällen auf die marinen Lebensgemeinschaften sind lange bekannt und wurden ebenso lange ignoriert. Plastikabfall ist allgegenwärtig und hat längst auch die abgelegensten Weltregionen erreicht. Und Plastik vergeht nicht, es zersetzt sich lediglich in immer kleinere Partikel: eine Plastiktüte in 25 Jahren, eine Plastikflasche in 450 Jahren, ein Fischernetz in bis zu 600 Jahren. Delfine und Fische verfangen sich in alten Netzen, Tauwerk oder Folien und ersticken jämmerlich. Bis zu einer Million Seevögel sterben Jahr für Jahr. Wie auch Meeresschildkröten verwechseln sie Tütenfetzen oder Spielzeug mit ihrer natürlichen Nahrung. Sie verhungern mit vollem Magen oder sterben an inneren Verletzungen.
Das regionale Übereinkommen zum Schutz der Meeresumwelt des Nordostatlantiks (OSPAR) erfasst die Müllbelastung an unseren Küsten. Im niederländischen und deutschen Wattenmeer liegen danach auf 100 Meter Küste durchschnittlich 236 Müllteile, etwa 75 Prozent davon aus Plastik.
Kaum politischer Druck
Zum Jahreswechsel 2014/15 hat die Europäische Kommission einen Vorschlag zurückgezogen, der eine Perspektive für die europäische Abfallentsorgung und Kreislaufwirtschaft aufgezeigt hätte – mit einer Anhebung der Recyclingziele, Deponierungsverboten und einer Vereinheitlichung der notwendigen Umweltstatistik. Einziger Grund für den Rückzieher war das politische Ziel, Bürokratie abzubauen und Märkte zu liberalisieren.
Derzeit wird eine Neuauflage des Kreislaufwirtschaftspakets vorbereitet. Doch die Plastiklobby schärft ihre Waffen: Business Europe, der Bundesverband der deutschen Industrie, PlasticsEurope in Brüssel sowie der Verband der Chemischen Industrie zielen in ihren Strategien darauf ab, so wenig klare Vorgaben wie möglich zur Plastikmüllvermeidung und -verwertung zu bekommen. Beides sind jedoch umweltpolitische und nicht wirtschaftspolitische Ziele. Die Nachhaltigkeitsstrategien von EU, Bund und Ländern verlangen, dass generationengerecht gehandelt und eine Lösung für das Problem Plastik gefunden wird.
Wir benötigen politischen Druck für Forschung und Entwicklung der Industrie, die völlig neue Kunststoffe hervorbringt. Diese müssen ohne gesundheitlich problematische Additive (Farbstoffe, Weichmacher) hergestellt werden. Sie müssen – nicht nur im Labor – recycelbar sein. Nicht alle müssen nach Ansicht des NABU biologisch abbaubar sein, aber zumindest jene, die sehr wahrscheinlich in der freien Natur landen, wie etwa Landwirtschaftsfolie oder Radiergummi. Produkte und Verpackungen sollten möglichst aus Monomaterial, also nicht aus Verbunden oder unterschiedlichen Kunststoffsorten entwickelt werden, um die stoffliche Verwertung sicherzustellen. Ein Blick in die Geschäftsberichte der Chemiekonzerne der Welt mit Milliardengewinnen in jedem Jahr rechtfertigt einen solchen Anspruch.
Nachwachsende Rohstoffe
Es wird jedenfalls nicht ausreichen, bestehende Kunststoffsorten durch solche aus Biomasse zu ersetzen. Zwar ist die stoffliche Nutzung nachwachsender Rohstoffe nicht neu – etwa bei Reifen aus Kautschuk oder Kleidung aus Baumwolle –, doch für den massenhaften Einsatz werden gewaltige Flächen benötigt. Deshalb sollte auch für Kunststoffe aus Biomasse das Prinzip der kaskadischen Nutzung, also eine möglichst lange Verweildauer im Wirtschaftskreislauf, gelten.
Lösungswege
Es gibt konkrete Vorschläge, weniger Plastik zu verwenden und so auch das Müllrisiko zu vermindern. Dazu zählt die Einführung einer Getränkeverpackungssteuer genauso wie die Integration von ökologischer Produzentenverantwortung im Wertstoffgesetz oder gleiche Getrennthaltungspflichten und Sortierstandards für Gewerbebetriebe wie für Privathaushalte. Durch gemeinsame Anstrengungen von Industrie, Einzelhandel, Politik und Bevölkerung könnte allein in Deutschland der Kunststoffabsatz durch einfach umzusetzende Maßnahmen gestoppt und sogar auf 7,8 Millionen Tonnen pro Jahr leicht gesenkt werden.
Übersetzung - Englisch Less would be more
The bioeconomy alone will not solve the problem of plastic
We can no longer imagine our world today without plastic. Over the past 25 years, the worldwide production of plastic has tripled to 300 million tonnes a year. At the same time, plastic causes serious environmental problems, and nowhere more so than in the sea. Even in countries that are supposedly highly developed in terms of waste management, such as Germany, huge quantities of plastic waste find their way back into nature.
The use of plastic materials is tightly linked to the massive spread of consumer goods. Industrial countries with a specialised division of labour and a high-income middle-class use considerably more plastic than societies specialised in subsistence farming or agricultural production. However, globalisation means that the demands of plastic is also growing in the southern hemisphere. In particular, the fast-growing emerging countries in Asia are today among the largest producers and consumers of plastic.
In Europe, Germany produces and consumes the most plastic and is home to some of the most powerful chemical companies. Huge turnovers and profits are associated with the development and sale of plastics. The industry is growing, but a solution for the problem of plastic waste has yet to be found.
Deadly consequences
The ecological effects of plastic waste on the marine communities have long been known and have been ignored for just as long. Plastic waste is omnipresent and has reached even the most remote regions of the world. And plastic does not decay, it merely breaks down into ever smaller particles: a plastic bag takes 25 years to break down, a plastic bottle 450 years, a fishing net up to 600 years. Dolphins and fish get caught in old nets, cordage and foils and suffocate horribly. Up to a million seabirds die every year. Like turtles, they mistake toys and scraps of plastic bags for their natural food. They starve with full stomachs or die of internal injuries.
The regional Convention for the Protection of the Marine Environment of the North-East Atlantic (OSPAR) measures the waste pollution along our coasts. According to OSPAR, in the Dutch and German Wadden Sea, a hundred metres of coastline contains on average 236 debris items, of which around 75 per cent are made of plastic.
Too little political pressure
At the turn of the year 2014/15, the European commission withdrew a proposal that would have detailed prospects for European waste disposal and the closed-loop economy – with an increase in recycling objectives and dumping bans, and standardisation of the necessary environmental statistics. The only motive for the backdown was the political goal of reducing bureaucracy and liberalising markets.
A new edition of the recycling economy package is currently being prepared. But the plastics lobby is sharpening its knives: the strategies of BUSINESSEUROPE, the Federation of German industries, PlasticsEurope in Brussels and the German chemical industry association VDI (Verband der Chemischen Industrie) are aiming at getting guidelines on plastic waste avoidance and recycling that are as unclear as possible. However, both are environmental goals and not economic ones. The sustainability policies of the EU, and the Federal and regional authorities in Germany demand that the issue be handled in a way that is fair for future generations, and that a solution be found for the problem of plastic waste.
We need to bring political pressure to bear on research and development in the industry, which is creating entirely new plastic materials. These need to be produced without any additives (colouring agents, plasticisers, etc.) that are problematic for health. They have to be recyclable – and not just in the laboratory. According to NABU (Germany’s Nature and Biodiversity Conservation Union), they do not all need to be biologically degradable, but at least those that are very likely to end up in the wild, such as agricultural films or rubber erasers, should be. Wherever possible, products and packaging should be developed from mono materials, that is to say not from composites or different types of plastic, in order to ensure that they can be recycled. A look at the annual reports of the world‘s chemical companies with profits in the billions each year more than justifies a requirement of this nature.
Renewable resources
At all events, it will not be enough to replace existing types of plastic with ones made from biomass. The material use of renewable raw materials is certainly not new – in tyres made of rubber, or clothing made of cotton – but huge areas are required for widespread use. For this reason, the cascading use principle should also apply to plastics made from biomass, in other words they should have as long a dwell time in the economic cycle as possible.
Possible solutions
There are concrete suggestions for using less plastic and thus also reducing the risks posed by waste. In Germany, one of these is the introduction of a drinks packaging tax, another is the integration of ecological manufacturer responsibility in the law on recyclable materials or duties in terms of waste separation and sorting standards for commercial enterprises as for private households. Through the collective efforts of industry, retail, political bodies and the general public, in Germany alone, increases in plastic sales could be halted through the application of simple measures, and sales could even be slightly reduced to 7.8 million tonnes a year.
Italienisch > Englisch: daVinci in ginecologia General field: Medizin Detailed field: Medizin: Instrumente
Ausgangstext - Italienisch Chirurgia robotica in ginecologia
La chirurgia robotica rappresenta la nuova frontiera della chirurgia mini-invasiva.
Con il robot, che conferisce al gesto chirurgico una precisione non confrontabile con altre tecniche, si possono infatti superare i limiti legati alla difficoltà di trattare, con la laparoscopia, patologie in sedi anatomicamente difficili da raggiungere.
Estendendo ad interventi complessi - con la stessa qualità ed efficacia della chirurgia tradizionale - i benefici della mini-invasività:
• Nessuna cicatrice estesa dell’addome
• Ridotto tempo operatorio (minor anestesia)
• Ridotte perdite di sangue
• Minor dolore postoperatorio
• Ripresa più rapida
La versatilità dei movimenti degli strumenti robotici, che consente di raggiungere spazi anatomici ristretti e profondi, è una caratteristica particolarmente vantaggiosa nella chirurgia pelvica, quindi in Ginecologia.
________________________________________
Questo nuovo approccio terapeutico potrebbe essere lo standard chirurgico di questo secolo per molte patologie. Agli inizi del 1990 la chirurgia mini-invasiva laparoscopica iniziava a delineare i primi passi di quella che, dopo un decennio, sarebbe diventata lo standard della chirurgia ginecologica.
L’evoluzione della chirurgia laparoscopica è sicuramente la chirurgia robotica, che, oltre ai vantaggi della chirurgia mini-invasiva, aggiunge una strumentazione che cerca di superare i limiti degli strumenti offerti dalla chirurgia laparoscopica.
L’intervento con il robot evita il taglio sull’addome anche per interventi ginecologici oncologici. Inoltre bisogna sottolineare che è sempre il chirurgo che esegue l’intervento e non la macchina.
Vantaggi generali della chirurgia robotica
Evitare il taglio sull’addome rispettando l’integrità corporea della donna
Tutti gli interventi che possono essere eseguiti con la tecnica laparoscopica si possono fare con il robot, quindi evitare il taglio sull’addome rispettando l’integrità corporea della donna. Con la chirurgia robotica si sono ridotti i tempi operatori e quindi minor anestetico e stress fisico per la paziente. Inoltre le pressioni di CO2 nell’addome sono ridotte e quindi anche pazienti con particolari problemi possono essere operate.
La versatilità dei movimenti degli strumenti robotici è il vantaggio più importante. La versatilità degli strumenti consente di raggiungere spazi anatomici ristretti e profondi e questa caratteristica risulta particolarmente vantaggiosa nella chirurgia pelvica quindi in ginecologia (endometriosi setto retto-vaginale, intestinale) oppure nella chirurgia delle pazienti obese, dove l’ingombro intestinale restringe il campo di azione. La seconda caratteristica fondamentale del robot è la visione tridimensionale.
La visione tridimensionale aiuta il chirurgo nei vari tempi chirurgici nel visualizzare meglio nervi, vasi ed alcune strutture legamentose. Non bisogna trascurare il minor stress fisico del chirurgo, visto che l’operatore è comodamente seduto alla console e senza fatica può eseguire interventi lunghi che risultano generalmente stancanti con la tecnica laparoscopica classica, come interventi oncologici. Vantaggi specifici verranno spiegati nei singolo capitoli.
Übersetzung - Englisch Robotic surgery in gynaecology
Robotic surgery represents the new frontier in mini-invasive surgery.
With the robot, surgical movements can be carried out with a precision that is impossible in other techniques. As a result, it can overcome the limits associated with the difficulty of treating, with laparoscopy, pathologies in positions that are anatomically difficult to reach.
This means that complex operations can enjoy the benefits of minimal invasiveness, without losing any of the quality and efficacy of traditional surgery:
• no long scars on the abdomen
• reduced operating times (less anaesthetic)
• reduced blood loss
• less post-operative pain
• quicker recovery
The robotic instruments’ range of movement, which means that deep, constricted areas of the body can be reached, is a particularly advantageous feature in pelvic surgery, and therefore in gynaecology.
________________________________________
This new therapeutic approach could be the surgical standard of this century for many pathologies. Early in 1990, laparoscopic minimally invasive surgery started to outline the first steps of what, after a decade, would become the standard for gynaecological surgery.
The evolution of laparoscopic surgery is undoubtedly robotic surgery, which, in addition to offering the advantages of mini-invasive surgery, adds instrumentation that aims to go beyond the limits of the instruments offered by laparoscopic surgery.
Working with the robot avoids cutting open the abdomen even for gynaecological cancer surgery. It must also be stressed that it is always the surgeon who actually performs the operation, not the machine.
What are the advantages of robotic surgery?
It avoids cutting into the stomach and respects the patient’s bodily integrity
All the operations that can be carried out with laparoscopic technology can be performed using the robot, thus avoiding an open procedure where the stomach is cut open, and respecting the patient’s bodily integrity. Robotic surgery reduces operating time meaning that less anaesthetic is required and there is less physical stress for the patient. Additionally, the CO2 pressures in the abdomen are reduced, meaning that patients with particular problems can be operated on.
The versatility of the robotic instruments is the most significant advantage. This versatility means that deep, narrow anatomical spaces can be reached, and this feature is particularly advantageous in pelvic surgery, and therefore in gynaecology (recto-vaginal or intestinal endometriosis) or in operating on obese patients, where the large size of the intestines restricts the field of action.
The second fundamental characteristic of the robot is the three-dimensional view. The 3D view helps the surgeon in the various stages of the operation in better visualizing nerves, veins and certain ligamentous structures.
And the reduced physical stress for the surgeon must not be overlooked, a result of the fact that the operator sits comfortably at the console and can tirelessly perform long operations that would normally be tiring using conventional laparoscopic technology, such as cancer surgery. The specific advantages will be explained in the individual chapters.
Le cardiomiopatie sono patologie che colpiscono il muscolo cardiaco riducendo l'efficienza del cuore, che fatica a pompare il sangue nel resto del corpo.
Che cosa sono le cardiomiopatie?
Le cardiomiopatie si dividono in tre tipi: dilatative, ipertrofiche e restrittive. Le più comuni sono le cardiomiopatie dilatative, caratterizzate da problemi al ventricolo sinistro che si dilata e non riesce a pompare efficacemente il sangue. Le cardiomiopatie ipertrofiche sono invece associate a una crescita o a un ispessimento anomalo del muscolo cardiaco che compromette la funzionalità del cuore. Nelle forme restrittive, infine, il muscolo cardiaco perde elasticità e si irrigidisce. Fra le possibili complicazioni di una cardiomiopatia sono inclusi lo scompenso cardiaco, la formazione di trombi, problemi alle valvole cardiache, morte improvvisa.
Quali sono le cause delle cardiomiopatie?
Oltre metà dei casi di cardiomiopatia dilatativa – soprattutto nelle età avanzate – riconosce una causa di tipo ischemico (un precedente infarto miocardico o una malattia delle coronarie); nelle fasce di età più giovani è più frequente la forma cosiddetta idiopatica (cioè di cui non si conosce la causa); in una minoranza di queste forme si riscontra un aspetto ereditario; altre cause sono legate all'ipertensione, a malattie delle valvole cardiache, a tachicardie molto rapide e prolungate, all'abuso di alcool e di droghe (cocaina, eroina, anfetamine), ad alcuni farmaci chemioterapici; forme più rare sono legate all'infezione da HIV e ad altre malattie infettive. Le forme ipertrofiche hanno per lo più un'origine genetica. Le forme restrittive sono poco frequenti; di alcune è responsabile un'infiltrazione del muscolo cardiaco, come nell'amiloidosi, nell'emocromatosi, nella sarcoidosi, altre forme sono definite idiopatiche (non se ne conosce la causa).
Quali sono i sintomi delle cardiomiopatie?
Nelle loro fasi iniziali le cardiopatie possono rimanere asintomatiche, ma con il progredire della malattia possono comparire disturbi legati all'insufficienza cardiaca, come difficoltà respiratorie (sia sotto sforzo che a riposo), gonfiori a gambe, caviglie e piedi, dilatazioni dell'addome dovute all'accumulo di fluidi, tosse, affaticamento, battiti irregolari o episodi di palpitazioni, vertigini e svenimenti.
Come si prevengono le cardiomiopatie?
La migliore prevenzione consiste in un corretto stile di vita e nell'eliminazione dei fattori di rischio: condurre una vita sana, svolgere attività fisica regolare (almeno mezz'ora di camminata a passo rapido tre volte la settimana), alimentazione sana (non eccedere con il sale, tanta frutta, verdura, pesce, pochi grassi animali, cibi sani e semplici, pochi cibi "industriali"), mantenere un peso corretto (l'eccesso di peso affatica il cuore), evitare tabacco e sostanza nocive come cocaina, anfetamina, anabolizzanti, droghe, evitare l'eccesso di alcol; curare scrupolosamente le condizioni che costituiscono un "fattore di rischio" per il cuore, come ipertensione arteriosa, diabete mellito, elevati livelli di colesterolo nel sangue.
Diagnosi
La diagnosi di cardiomiopatia si basa su un'accurata visita medica in cui il medico indagherà anche sulla presenza di eventuali problemi cardiologici in famiglia.
Al termine della visita il medico potrebbe prescrivere:
• una radiografia del torace
• un elettrocardiogramma
• un ecocardiogramma
• un test da sforzo
• una scintigrafia miocardica
• una risonanza magnetica cardiaca
• esami del sangue
In base ai risultati di questi esami si potrebbe rendere necessaria l'esecuzione di ulteriori esami di secondo livello, quali coronarografia, studio emodinamico, biopsia miocardica.
Trattamenti
Il trattamento più adatto dipende dal tipo di cardiomiopatia e dal tipo di disturbo presente. Gli obiettivi sono però sempre ridurre i sintomi, prevenire il peggioramento della situazione e ridurre il rischio di complicazioni.
In caso di cardiomiopatia dilatativa potrebbe essere necessario assumere farmaci (come ACE-inibitori, antagonisti del recettore dell'angiotensina, beta-bloccanti, diuretici e digossina), sottoporsi a interventi chirurgici per l'impianto di particolari pacemaker o defibrillatori, o un trattamento combinato farmaci-intervento.
In caso di cardiomiopatia ipertrofica potrebbero essere prescritti beta-bloccanti, calcio-antagonisti o particolari antiaritmici. Se il trattamento farmacologico non dovesse essere sufficiente potrebbe essere necessario un intervento chirurgico correttivo o l'impianto di un pacemaker o di un defibrillatore.
Il trattamento delle cardiomiopatie restrittive è mirato essenzialmente al miglioramento dei sintomi. Il medico può consigliare di limitare il consumo di sale e di tenere quotidianamente sotto controllo il peso. Potrebbero essere prescritti diuretici o farmaci per ridurre la pressione e tenere sotto controllo il battito cardiaco. Nel caso in cui fosse possibile identificare la causa della cardiomiopatia saranno prescritti anche trattamenti specifici contro la problematica sottostante.
Nei casi più gravi in cui la malattia progredisce nonostante i trattamenti potrebbe essere necessario un trapianto o l'impianto di un dispositivo di assistenza ventricolare (VAD).
Übersetzung - Englisch Cardiomyopathies
Cardiomyopathies are diseases that affect the heart muscle, reducing the heart’s efficiency and causing it to have difficulty pumping blood around the rest of the body.
What kinds of cardiomyopathy are there?
There are three kinds of cardiomyopathy: dilated, hypertrophic and restrictive. The most common kind is dilated cardiomyopathy, which is characterised by problems on the left ventricle (one of the heart's main chambers) – it dilates and is no longer able to pump the blood effectively. In hypertrophic cardiomyopathy, on the other hand, the cardiac (heart) muscle grows or thickens abnormally, making the heart perform less well. Finally, in restrictive cardiomyopathy, the cardiac (heart) muscle loses elasticity and stiffens. The possible complications of cardiomyopathy include heart failure, the formation of blood clots, problems with the heart valves, and sudden death.
What are the causes of cardiomyopathy?
More than half the cases of dilated cardiomyopathy – particularly in older people –are caused by ischaemia (an inadequate supply of blood to the heart), such as a previous myocardial infarction (heart attack) or coronary heart disease; in younger people, the most frequent form is referred to as idiopathic, meaning that the cause isn’t known; in a small number of these cases, the disease can be hereditary; other causes are connected to hypertension (high blood pressure), heart valve disease; very fast and prolonged tachycardia (abnormally fast heart rate), alcohol and drug abuse (cocaine, heroin or amphetamines) and certain chemotherapy drugs; rarer forms are associated with infection from HIV and other infective diseases. Hypertrophic cardiomyopathy is generally hereditary. Restrictive cardiomyopathy is quite rare; some forms are caused by the build-up of certain substances in the heart muscle, as is the case with amyloidosis, haemochromatosis and sarcoidosis; other forms are idiopathic (the cause is unknown).
What are the symptoms of cardiomyopathy?
In the early stages, cardiomyopathy can be asymptomatic (in other words, you may not notice any symptoms), but, as the illness progresses, you may experience some of the symptoms associated with heart failure, such as difficulty breathing (both after activity and at rest), swollen legs, ankles and feet, a swollen abdomen (tummy) caused by a build-up of fluid, coughing, tiredness, irregular heart beat or episodes of heart palpitations (your heart may feel like it's pounding, fluttering or beating irregularly), and dizziness or fainting. These symptoms generally tend to worsen over time whatever kind of cardiomyopathy you have.
How can I prevent cardiomyopathy?
The best prevention consists in a healthy life style and in eliminating risk factors: taking regular exercise (at least half an hour of brisk walking three times a week); following a healthy diet (don’t overdo the salt, eat lots of fruit, vegetables and fish, and avoid animal fats and processed foods); maintaining a healthy body weight (excess weight puts a strain on your heart); avoiding tobacco and harmful substances such as cocaine, amphetamines, anabolic steroids and drugs; avoiding too much alcohol; and being careful to get treatment for conditions that constitute a “risk factor” for your heart, such as hypertension (high blood pressure), diabetes and high cholesterol levels.
How is the disease diagnosed?
To check if you have cardiomyopathy, your doctor will carry out a thorough physical examination and also ask you whether there are any heart problems in your family.
At the end of the examination, your doctor could prescribe:
• a chest x-ray
• an electrocardiogram
• an echocardiogram
• a stress test
• a myocardial perfusion scan
• a magnetic resonance imaging (MRI) scan of your heart
• blood tests
Depending on the results of these tests, it may be necessary for you to undergo further tests, such as a coronary angiogram, haemodynamic monitoring or a heart muscle biopsy.
What treatments are available?
The most suitable treatment depends on the type of cardiomyopathy you have and the kind of disease present. However, the aim is always to improve symptoms, prevent the situation getting worse and reduce the risk of complications.
With dilated cardiomyopathy, you may need to take a course of drugs (such as ACE inhibitors, angiotensin-2 receptor blockers (ARBs), beta blockers, diuretics or digoxin); have a procedure to have a pacemaker or defibrillator fitted; or be treated with a combination of both drugs and a procedure.
With hypertrophic cardiomyopathy, you may be prescribed beta blockers, calcium channel blockers (CCBs) or certain anti-arrhythmic drugs. If the drug treatment is not enough, you may need corrective surgery or to have a pacemaker or defibrillator fitted.
The treatment for restrictive cardiomyopathy essentially aims at improving symptoms. Your doctor may advise you to reduce your salt intake and to weigh yourself daily. They may prescribe you diuretics or medication to reduce high blood pressure or keep your heart rate under control. If your doctor has been able to identify the cause of your cardiomyopathy, they will also prescribe some specific treatments for the underlying problem.
In more serious cases, in which the disease worsens despite the treatments, you may need to receive a heart transplant or have a ventricular assist device (VAD) fitted.
Italienisch > Englisch: Passivhaus General field: Technik Detailed field: Bauwesen/Hochbau/Tiefbau
Ausgangstext - Italienisch Come funziona una casa passiva?
Dal punto di vista tecnico, la casa passiva deve la sua efficienza alla combinazione di una serie di accorgimenti essenziali: isolamento termico, finestre termiche, forma ed esposizione e ventilazione. Ma vediamoli da vicino.
Isolamento termico. E’ ottenuto non solo grazie all’aumento dello spessore del materiale isolante (circa 30 centimetri contro gli 8-10 centimetri delle case tradizionali) ma anche e soprattutto collocando l’isolante nello strato più esterno della parete, anziché nel lato interno come normalmente avviene. L’isolante è disposto su tutte le pareti esterne dell’edificio nella loro interezza, senza tralasciare la corretta coibentazione del tetto.
Finestre termiche. Un punto debole nell’isolamento degli edifici è generalmente costituito dalle finestre. In una casa passiva il vetro delle finestre è triplo anziché doppio. La superficie vetrata diventa in questo modo più isolante della cornice stessa dell’infisso, motivo per cui si tende a progettare poche grandi finestre invece che tante finestre piccole: le finestre grandi aumentano la luminosità e il calore prodotto dai raggi del sole, mentre diminuiscono le perdite di calore attraverso la struttura dell’infisso.
Forma ed esposizione. L’isolamento termico è ottenuto anche grazie allo studio della forma dell’edificio: edifici di volume compatto mantengono meglio il calore rispetto a edifici dal volume spezzettato o distribuito. E’ inoltre importante prevedere una corretta esposizione dell’edificio rispetto al sole, in modo che le pareti più soleggiate siano capaci di assorbire il calore, per esempio attraverso superfici vetrate, mentre le pareti più fredde e meno soleggiate siano perfettamente coibentate. Nei climi temperati occorre prevedere, al tempo stesso, una sufficiente ombreggiatura delle pareti rivolte verso il sole, in modo da mantenere la casa fresca nei mesi estivi.
Ventilazione. La circolazione dell’aria tra interno ed esterno è necessaria in tutti gli edifici ma in genere provoca forti perdite di calore. Nella casa passiva il problema è aggirato grazie a una ventilazione controllata, che attraverso un motore ad alta efficienza energetica e un apposito dispositivo per lo scambio di calore, permette all’aria in entrata di assorbire fino all’80-90% del calore dell’aria in uscita, prima di circolare all’interno.
La ventilazione controllata serve anche a uniformare la temperatura delle diverse stanze dell’edificio, recuperando il calore dalle stanze dove se ne produce di più (come il bagno, la cucina, e gli ambiente più affollati) ) per cederlo alle stanze più fredde come le camere da letto e il soggiorno, e al contempo ricambiare l’aria viziata.
Übersetzung - Englisch How does a passive house work?
From a technical point of view, a passive house owes its efficiency to the combination of a series of essential features: thermal insulation, thermally insulated windows, shape and exposure, and ventilation. Let’s look at these in more detail.
Thermal insulation. This is achieved not only through the use of very thick insulating material (around 30 cm thick, compared to the 8–10 cm in traditional houses) but also, and most importantly, by placing the insulation in the outermost layer of the walls, instead of in the inner layer as is usually the case. Insulation is applied to the entire surface of all the outer walls, and the roof is also properly insulated.
Thermal windows. Windows are generally a weak point in building insulation. In a passive house, the windows are triple glazed rather than double glazed. As a result, the glazed area is better insulated than the window frame itself, which is why passive houses tend to be designed with a few large windows instead of lots of small windows. The large windows increase the amount of light entering and the amount of heat generated by the sun's rays, at the same time as reducing heat losses through the frames.
Shape and exposure. Thermal insulation is also achieved through a careful study of the building’s shape: buildings with a compact volume keep the heat in better than buildings whose volume is divided up or spread out. It is also important to provide for the building’s correct exposure to the sun, so that the walls that receive more sunlight can absorb the heat, for instance through their glazed areas, while the colder walls that receive less sunlight need to be perfectly insulated. At the same time, in temperate climes, the design needs to provide for enough shade on the walls facing the sun to ensure that the house stays cool in the summer months.
Ventilation. Air circulation between inside and outside is necessary in all buildings, but usually causes serious heat loss. In passive houses, the problem is circumvented thanks to controlled ventilation, which uses a highly energy-efficient motor and a heat exchanger to ensure that the incoming air absorbs up to 80–90% of the heat from the exhaust air, before circulating around the inside of the house.
Controlled ventilation also ensures that the temperature of the different rooms in the building is uniform, by recovering the heat from the rooms that produce more (such as the bathroom and kitchen, and the busier spaces) and directing it into the colder rooms such as the bedroom and the living room, replacing the stale air at the same time.
Italienisch > Englisch: Materia Oscura General field: Naturwissenschaften Detailed field: Astronomie und Weltraum
Ausgangstext - Italienisch
Materia Oscura
Che cos'è la Materia Oscura ?
La nascita della Materia Oscura è profondamente legata ai grandi progressi fatti in Cosmologia, la branca della Fisica che studia la nascita e l’evoluzione del nostro Universo. Fino alla prima metà del 1900 si credeva che la quasi totalità della massa dell'Universo risiedesse nelle stelle; oggi invece sappiamo che queste costituiscono soltanto una percentuale irrisoria della materia cosmica (circa il 4%). La restante parte della massa dell’Universo non è visibile e a tale massa mancante si dà appunto il nome di Materia Oscura.
Gli scienziati, inoltre, pensano che accanto alla Materia Oscura esista una particolare forma di energia (nota come Energia Oscura), la quale, secondo il principio di equivalenza di Einstein (E = mc2), è in grado di dar conto della maggior parte della massa dell’Universo.
Quali sono le osservazioni sperimentali che hanno portato alla formulazione del problema della Materia Oscura?
Sono state le osservazioni di stelle, galassie e ammassi di galassie da parte di astronomi e astrofisici a far nascere l’idea che l’Universo avesse molta più massa di quella visibile.
Le galassie sono costituite da un nucleo molto luminoso e massiccio attorno al quale ruotano le altre stelle, distribuite in maniera tale che la loro concentrazione diminuisce man mano che ci si allontana dal nucleo galattico (Figura 1).
Dalla legge di gravitazione universale di Newton si ricava che in un sistema gravitazionale come quello di una galassia, la velocità delle stelle che si trovano nella regione esterna al nucleo deve decrescere all’aumentare della distanza. Al contrario, le osservazioni effettuate su centinaia di galassie hanno dimostrato che la velocità delle stelle anche lontane dal nucleo era molto maggiore di quella attesa e inoltre non diminuiva con la distanza (Figura 2). Questo può essere spiegato solo se si assume che la galassia contenga della materia invisibile e non concentrata nel nucleo, la cui attrazione gravitazionale è responsabile del moto delle stelle.
Le galassie inoltre, sotto l’influsso della mutua interazione gravitazionale, tendono a formare degli agglomerati noti come ammassi di galassie (Figura 3). Sempre utilizzando la legge di Newton siamo in grado di determinare quale deve essere il moto relativo di ciascuna galassia di un ammasso, mediante la conoscenza della massa totale del sistema, cioè la somma delle masse delle galassie che lo compongono. Anche in questo caso, osservazioni sperimentali di un gran numero di ammassi hanno dimostrato che le velocità delle galassie erano anche 400 volte maggiori di quelle calcolate, il che indicava che l’ammasso era molto più “pesante” di quanto non sembrasse.
Negli ultimi anni, i risultati di diversi esperimenti hanno portato alla scoperta che il nostro Universo è piatto, ovvero che la sua curvatura spazio-temporale è nulla. Questo comporta che la densità di massa totale dell’Universo debba essere uguale a un valore noto, detto Densità Critica e pari circa a 10-30 g/cm3. La massa luminosa dell’Universo, però, non basta a dare questo valore di densità. È nuovamente necessario ipotizzare che la maggior parte della massa dell’Universo sia invisibile e presente sotto forme diverse dalla materia ordinaria che siamo abituati a considerare.
Di cosa è fatta la Materia Oscura?
La natura della materia oscura è ancora sconosciuta. Essa può avere varie componenti: una di tipo barionico (materia "ordinaria", cioè fatta da atomi) e una, più “esotica”, di tipo non barionico.
La componente barionica, costituita da oggetti massicci ma non luminosi, può essere costituita da pianeti, nane bianche (stelle che hanno finito di bruciare), nane brune (stelle che non hanno mai cominciato a bruciare), stelle di neutroni e buchi neri.
Questi oggetti vanno sotto il nome di MACHOs (Massive Astrophysical Compact Halo Objects = Oggetti astrofisici massicci e compatti di alone) ed emettono per loro natura una quantità di luce troppo scarsa per poter essere rivelati. Esiste però un diverso sistema di rivelazione di questi oggetti, basato su un effetto detto lente gravitazionale(1).
Le osservazioni attuali indicano che la materia oscura barionica presente nell’universo può contribuire solo per una piccolissima percentuale alla Materia Oscura.
La Materia Oscura non barionica non è costituita da oggetti compatti ma da particelle non ancora scoperte. Si ipotizza che possa trattarsi di particelle supersimmetriche quali neutralini, o neutrini massicci o altre particelle mai osservate e soggette solo alla forza gravitazionale e all’interazione nucleare debole. Queste classe di particelle, note con il nome di WIMPs (Weakly Interacting Massive Particles = particelle massive debolmente interagenti), sono molto massive (100 volte più pesanti di un protone o più), ma interagiscono pochissimo con la materia.
Esse vagherebbero nel Cosmo, addensandosi in prossimità delle galassie a causa dell’attrazione gravitazionale. I fisici ritengono che le WIMPs altro non siano che delle particelle previste da alcune teorie (per esempio la supersimmetria), ma non ancora osservate neanche nei più potenti acceleratori.
E l’Energia Oscura?
La cosiddetta “Energia Oscura” (Dark Energy, DE) rappresenta la componente più rilevante del nostro Universo. Secondo le più recenti osservazioni sperimentali, essa sembra costituire il 70% della densità dell’Universo.
Negli anni trenta Einstein, nel formulare la sue teoria della relatività generale, introdusse una costante, che egli stesso chiamò “costante cosmologica”. Tale quantità rappresenta in maniera semplificata l’energia che si può associare allo spazio vuoto e quindi è presente in ogni parte dell’Universo.
Einstein introdusse la costante cosmologica per fare in modo che la sua teoria descrivesse un Universo statico (come al tempo si pensava che fosse). Quando si scoprì che l’Universo era invece in espansione, egli riscrisse le sue equazioni senza la costante cosmologica, definendola “il suo più grande sbaglio”, ma senza sapere che in un futuro non troppo lontano essa sarebbe stata ripresa in considerazione.
La particolarità dell’energia oscura è che essa agisce come una gravità negativa, ovvero tende a far espandere l’Universo e si contrappone alla decelerazione dovuta all’attrazione gravitazionale della materia ordinaria e della materia oscura.
Quello dell’Energia Oscura è un campo ancora molto poco chiaro ma allo stesso tempo intrigante e studiato da un gran numero di cosmologi. Osservazioni sperimentali possono essere eseguite in maniera indiretta per determinare la concentrazione di Energia Oscura: la sua esistenza infatti, determinerebbe una accelerazione nell’espansione dell’Universo che può essere rivelata osservando sorgenti di luce molto intense e molto distanti dalla Terra, come le supernovae lontane.
Come si rivela la Materia Oscura?
La rivelazione della Materia Oscura non barionica, sotto forma di particelle (WIMPs) è estremamente difficile a causa della loro debolissima interazione con la materia.
Per poter rivelare la presenza di una particella WIMP è necessario che essa interagisca in qualche modo con il nostro strumento di misura, dando un segnale. Purtroppo queste interazioni sono molto rare (ancora più rare delle interazioni dei neutrini). Per di più il segnale che otteniamo è difficilmente distinguibile da quello di altre particelle (elettroni, fotoni e soprattutto neutroni).
Un esperimento che voglia rivelare le particelle WIMP deve essere necessariamente allestito in un laboratorio sotterraneo, dove solo particelle che interagiscono molto poco possono giungere e la presenza di altre particelle che possono disturbare le misure e costituire un rumore di fondo è ridotta al minimo (vedi Poster 1).
Note:
1. Lente gravitazionale: Immaginiamo che lo spazio sia come un lenzuolo esteso e ben tirato alle estremità. Se mettiamo sul lenzuolo una pallina di piombo molto pesante esso tende a deformarsi in corrispondenza del punto di contatto. Analogamente, nell’Universo, lo spazio si incurva in presenza di oggetti molto pesanti. Quando osserviamo nello spazio degli oggetti luminosi distanti da noi, le immagini di questi oggetti possono essere deviate e deformate se fra loro e noi si frappone un oggetto di massa molto elevata, come una galassia od un ammasso di galassie (Figura 4). Questo effetto, chiamato “lente gravitazionale”, avviene perché la curvatura dello spazio dovuta alla galassia o all’ammasso (la stessa che si presenta in corrispondenza della pallina di piombo) può provocare la deviazione della traiettoria della luce. Se osserviamo una sorgente luminosa e un oggetto massivo (MACHO) si frappone fra noi e la sorgente, il fenomeno a cui assistiamo è chiamato microlente (microlensing), perché la massa del MACHO non è grande abbastanza da creare una lente gravitazionale. Il fenomeno è molto simile a quello di una lente gravitazionale, solo che le varie immagini sdoppiate non sono rilevabili perché troppo vicine. Ne consegue che non potendo osservare più immagini separate, le vedremo tutte assieme, con un conseguente incremento di luminosità dell’oggetto che stiamo osservando. Questo aumento di luminosità è legato alla massa del MACHO.
What is dark matter?
The development of the concept of dark matter is closely connected to the huge progress that has been made in Cosmology, the branch of physics that studies the birth and evolution of our universe. Until the first half of the 20th century, it was believed that almost all the universe’s mass was contained in the stars; however, today we know that these only make up a negligible amount of cosmic matter (around 4%). The remaining mass of the universe is invisible, and we give this missing part the name of dark matter.
Scientists also think that, together with Dark Matter, there is a particular form of energy (known as Dark Energy) that accounts for most of the mass of the universe, according to Einstein's equivalence principle (E = mc2).
What are the experimental observations that led to the formulation of the Dark Matter problem?
It was the observations of stars, galaxies and galaxy clusters by astronomers and astrophysicists that gave rise to the idea that the universe had much more mass than was observable.
Galaxies are made up of a very bright and massive nucleus around which the other stars rotate, distributed in such a way that their concentration decreases the further away they are from the galactic nucleus.
According to Newton's law of universal gravitation, in a gravitational system such as that of a galaxy, the speed of the stars in the region outside the nucleus must decrease as the distance increases. However, observations of hundreds of galaxies have shown that the speed of stars far from the nucleus was much higher than expected. Furthermore, it did not decrease with distance (Figure 2). This can only be explained if we assume that the galaxy contains invisible matter not concentrated in the nucleus, whose gravitational attraction is responsible for the motion of the stars.
Moreover, under the influence of mutual gravitational interaction, galaxies tend to form agglomerations known as galaxy clusters (Figure 3). Using Newton’s law once again, and knowing the system’s total mass, that is the sum of the masses of the galaxies that make it up, we are able to determine what the relative motion of each galaxy of a cluster must be. In this case, too, experimental observations of a large number of clusters showed that the speeds of the galaxies were up to 400 times greater than the calculated values, indicating that the clusters were much “heavier” than they seemed.
In recent years, the results of several experiments have led to the discovery that our universe is flat, in other words its space-time curvature is zero. This means that the total mass density of the universe must be equal to a known value, called the Critical Density and equal to about 10-30 g/cm3. The luminous mass of the universe, however, is not great enough to produce this density value. It is again necessary to hypothesise that most of the mass of the universe is invisible and present in different forms from the ordinary matter we are accustomed to considering.
What is dark matter made of?
The nature of dark matter is still unknown. It may have different components: one of a baryonic kind (“ordinary” matter, that is to say made of atoms), another, more exotic, non-baryonic kind.
The baryonic part, made up of objects with a mass but non-luminous, may include planets, white dwarfs (stars that have finished burning), brown dwarfs (stars that never started burning), neutron stars and black holes.
These objects are classified as MACHOs (Massive Astrophysical Compact Halo Objects) and by their very nature emit too little light to be detected. However, there is a different way of detecting these objects, based on an effect called gravitational lensing(1).
Current observations indicate that the baryonic dark matter present in the universe can only account for a very small percentage of Dark Matter.
Non-baryonic Dark Matter is not composed of compact objects but of particles that have not yet been discovered. It is assumed that they may be supersymmetric particles such as neutrinos, or massive neutrinos or other particles never observed and subject only to gravitational force and weak nuclear interaction. These classes of particles, known as WIMPs (Weakly Interacting Massive Particles), have a very large mass (100 times or more heavier than a proton) but they hardly interact at all with matter.
They are assumed to roam about the Cosmos, gathering in greater numbers near the galaxies because of the gravitational attraction. Physicists believe that WIMPs are particles that have been predicted by some theories (for example supersymmetry), but not yet observed even in the most powerful accelerators.
So what is Dark Energy?
Dark Energy (DE), as it is known, is the largest component of our universe. According to the most recent experimental observations, it seems to make up 70% of the universe’s density.
When Einstein formulated his theory of general relativity in the 1930s, he introduced the idea of something he called the “cosmological constant”. This quantity is a simplified representation of the energy that can be associated with empty space and is therefore present in every part of the universe.
Einstein introduced the cosmological constant so that his theory would describe a static universe (which was the accepted thinking of the time). When it was discovered that the universe was expanding, he rewrote his equations without the cosmological constant, calling the latter “his biggest blunder”. What he didn’t know, however, was that it would be considered once again in the not-too-distant future.
The characteristic of dark energy is that it acts as a negative gravity, in other words it tends to make the universe expand and counteracts the deceleration caused by the gravitational attraction of ordinary matter and dark matter.
The field of Dark Energy is still very unclear but also very intriguing, and it is studied by many cosmologists. Experimental observations can be performed indirectly to determine the concentration of Dark Energy. In fact, its existence would determine an acceleration in the expansion of the universe that can be revealed by observing very intense light sources far away from the Earth, such as distant supernovae.
How can dark matter be detected?
It is very difficult to detect non-baryonic dark matter in the form of particles (WIMPs) because of their extremely weak interaction with matter.
To be able to reveal the presence of a WIMP particle, it needs to interact in some way with our measuring tools and produce a signal. Unfortunately, these interactions are very rare (even rarer than the interactions of neutrinos). What is more, it is very difficult to differentiate between the signal we obtain from a WIMP and that of other particles (electrons photons and above all neutrons).
Any experiment aimed at revealing WIMP particles must necessarily be set up in an underground laboratory: only particles that interact very little can reach that far, and the presence of other particles that can disturb the measurements and constitute a background noise is reduced to a minimum (see Poster 1).
Notes:
1. Gravitational lensing: Let's imagine that space is like a sheet that’s spread out and pulled taut at the corners. If we put a very heavy lead ball on the sheet, the latter tends to deform at the point of contact. Similarly, in the universe, space bends in the presence of very heavy objects. When we observe luminous objects that are a long way away from us in space, the images of these objects can be deflected and distorted if an object with a very large mass, such as a galaxy or a cluster of galaxies, stands between them and us (Figure 4). This effect, called "gravitational lensing", occurs because the space curvature caused by the galaxy or cluster (comparable to what occurs around the lead ball) can cause the trajectory of light to deviate. If we observe a light source, and a massive object (MACHO) stands between us and the source, the phenomenon we see is called microlensing, because the mass of the MACHO is not big enough to create a gravitational lens. Microlensing is very similar to gravitational lensing, except that the various ghost images are not detectable because they are too close together. Because we cannot see multiple separate images, we see them all together, with a consequent increase in brightness of the object we are observing. This increase in brightness is related to the mass of the MACHO.
Französisch > Englisch: Palace Fairmont General field: Marketing Detailed field: Tourismus und Reisen
Ausgangstext - Französisch BIEN-ETRE CORPOREL AU FAIRMONT MONTREUX PALACE
Au cœur de la Riviera vaudoise, le Fairmont Montreux Palace, construit en 1906, est un prestigieux joyau de la Belle Epoque. De style Art Nouveau ses belles salles aux riches dorures sont encadrées de verrières colorées.
Il s'est magnifiquement adapté aux exigences de notre époque avec ses 236 chambres et suites dotées d'un confort raffiné. Ses cinq restaurants et bars jouent habilement la carte de la variété : La Palmeraie pour ses petits- déjeuners ; Le Montreux Jazz Café, tout beau tout neuf, créé tout comme ses jumeaux à Paris, Genève, Zurich et Londres, pour rappeler avec bonheur le souvenir de Claude Nobs, initiateur du Festival de Jazz de Montreux étroitement lié à l'Hôtel, où ses fans y dégustent une cuisine intéressante dans une atmosphère très évocatrice; Le Lounge pour des collations gourmandes autour de son accueillante cheminée à toutes heures de la journée et du soir. Quant à La Terrasse du Petit Palais, elle a l'apanage des repas légers estivaux tandis que le Funky Bar propose, lui, une cuisine et des drinks festifs devant la meilleure scène live de la ville.
Last but not least, le Willow Stream Spa et ses deux piscines invitent sur 2'000 m2 à une nouvelle approche du bien-être corporel et spirituel. Il a reçut en 2014 le prix du Best Luxury Hotel Spa.
Übersetzung - Englisch PHYSICAL AND SPIRITUAL WELL-BEING AT THE FAIRMONT MONTREUX PALACE
Built in 1906, at the heart of the Swiss Riviera in the canton of Vaud, the Fairmont Montreux Palace is a precious jewel of Belle-Époque architecture. Its beautiful rooms, decorated in the Art Nouveau style, with rich gilding, are framed by atriums paned with coloured glass.
The hotel, with its 236 bedrooms and suites, furnished in sophisticated comfort, has been magnificently adapted to the demands of our times. Its five restaurants and bars ensure enough variety for anyone's tastes. La Palmeraie is renown for its breakfasts. The beautifully refurbished Le Montreux Jazz Café, created in the image of its sisters in Paris, Geneva, Zurich and London, evokes the happy memory of Claude Nobs, founder of the Montreux Jazz Festival, so tightly connected with the hotel – here its fans can enjoy an intriguing cuisine in a highly evocative atmosphere. Le Lounge offers delicious snacks around its inviting fireplace at all hours of the day and night. La Terrasse du Petit Palais provides light, summery meals, while the festive cuisine and drinks in the Funky Bar can be enjoyed while listening to the best live music in town.
And, between these delicious meals, what better than to relax in the Willow Stream Spa where the 2000 m2 of its two swimming pools offer a new approach to physical and spiritual well-being? The spa was the 2104 winner of the Best Luxury Hotel Spa award.
Niederländisch > Englisch: Campus West General field: Marketing Detailed field: Immobilien/Grundstücke
Ausgangstext - Niederländisch Campus West
Come home at work
Campus West op Linkeroever; inspiratie door verbinding
Inspiratie krijg je niet overal. Om vandaag succesvol te ondernemen moet je voorbij de lijntjes durven denken en meestal doe je dat niet alleen. Je hebt er een werkplek voor nodig die mensen met talent niet alleen ruimte geeft voor hun denken, maar ze ook nog eens samenbrengt. Campus West is precies die plek.
Ontdek hier een bruisende business community waarin vroegere grenzen worden opgeschoven, zodat jij dat met je bedrijf ook kan doen. Kom hier werken in een ontspannen en toch bruisende omgeving waarin alle ruimte is voor creativiteit. En vooral, laat je inspireren door de mensen om je heen en maak goeie ideeën nóg sterker.
De kracht van synergie
Hoe helpen wij bedrijven innoveren? Dat was de vraag die wij ons stelden toen we boven onze plannen stonden gebogen. Elegante architectuur en een groene omgeving is één, maar hoe creëer je een omgeving waarvan elke hoek en kier uitnodigt tot inspiratie?
Het antwoord vonden we door oude omheiningen weg te halen en plaats te maken voor een open, groen park. Zo creëerden we een open campus voor open-minded medewerkers, mensen kortom die morgen nog verder durven te kijken dan vandaag. In Campus West kom je niet aan op een suf kantoor, maar in een community van gelijkgestemde vernieuwers. Iemand ontmoeten met een idee waar jij wat aanhebt, gaat hier als vanzelf.
Ruimte voor groei
Die hele filosofie van innovatieve verbinding wordt in de architectuur concreet. Denk aan de kronkelende boulevard die tussen de gebouwen loopt en vanuit elke hoek nieuwe perspectieven opent. Een ideale plek voor openluchtevenementen, netwerkborrels en foodtruckfestivals. We gaan zelfs een amfitheater bouwen voor evenementen en productlanceringen. Ook binnenin voel je de kracht van synergie. Zo ontzorgen en koppelen we al onze bedrijven via een service center op het vlak van conciërge diensten, catering, bank- en postdiensten, en een delivery corner. Op die manier blijft er voor jou meer energie en tijd om je te focussen op de dingen waar het echt om gaat.
Innoveren en grenzen verleggen bijvoorbeeld, en dat doe je best in een omgeving die met je meebeweegt. In Campus West ben je er zeker van dat je kantoorruimte meegroeit met je omzet en betaal je nooit voor een vierkante meter te veel. Beginnen in een co-working space of bedrijfsruimte huren tot 16.000 m2. Hier kan het allemaal. Specifieke behoeften zoals laboruimten, ateliers of vergaderplek met allure? Vraag maar raak.
Een omgeving die inspireert
Creativiteit en innovatie knetteren het hardst in een sfeer van ontspanning. Onze architecten droegen daaraan bij door voor een elegant Scandinavisch ontwerp te tekenen dat perfect integreert met de sereniteit van de omgeving. Die combinatie doet iets met je geest, brengt je denken tot rust, en legt daardoor een stevige bedding onder je verbeelding.
Dat inspirerende karakter verbonden wij ook met de nabije omgeving. Laat je gedachten verwaaien in de Middenvijver, een stadslong met meer dan 8ha loop- en wandelpaden. In overleg met de stad Antwerpen creëerden we hier een eigen Campus West-Fit-O-Meter. Ontdek ook het Galgenweel, een prachtig meer dat bekendstaat om z’n zeilsport. Kantooruren voorbij? Blaas stoom af in het toprestaurant op je werk of in een van de cafeetjes op de campus. Nood aan afwisseling? Op vijf minuten van Campus west kan je genieten van tal van hippe cafés gelegen in het centrum van Antwerpen.
Zet hier je bedrijf op de kaart
In Campus West inspireer je niet alleen jezelf en je medewerkers, maar ook je klanten. Geen werkplek denkbaar waarvan elke vierkante centimeter zo uitnodigend is voor bezoekers als hier. De vergaderruimtes zijn state of the art en hebben behoorlijk wat uitstraling, de horeca-faciliteiten leveren topkwaliteit van koffiebreak tot zakendiner.
Door al die kruisbestuivingen op de campus zelf, vergeet je bijna hoe goed je nieuwe werkplek aansluit op de rest van de wereld. Campus West ligt vlakbij een van de drie grote knooppunten van de Ooster-weelverbinding. Door een nieuw afrittencomplex waaraan nu wordt gewerkt, ben je razendsnel op weg naar eender welke plek in het land. Met de tram zijn je medewerkers en klanten binnen vijf minuten op de Groenplaats. Fietsers halen hun hart op bij een groen en ontspannen fietsroutenetwerk, overdekte fietsenstallingen, lockers en douches.
Een open plek voor ideeën en durf
Campus West is volledig ontworpen zodat mensen met durf en talent er het beste uit zichzelf én elkaar kunnen halen. Het mooie daarbij is dat je niet alleen in de toekomst van je eigen bedrijf investeert, maar ook in die van de mensen met wie je samenwerkt. Campus West is niet alleen een plek die uitnodigt voor onverwachte inzichten en samenswerkingen, maar vooral ook een geweldig leuke plek om te werken. Je merkt het elke dag aan de sfeer op de werkvloer, aan de smaak van die perfecte latte of cappuccino uit de bar, of aan de lentezon in het vele groen om je heen. Je merkt het aan jezelf én aan elkaar.
In Campus West gun je jezelf, je medewerkers en je klanten een plek waarin ze floreren. Je gunt er jezelf alle ruimte voor inspiratie en groei. En als je nu al ideeën hebt die je met ons zou willen delen, aarzel dan zeker niet om van je te laten horen.
Übersetzung - Englisch Campus West
Feel at home at work
Campus West in Linkeroever; inspiration through connection
You can’t find inspiration just anywhere. To be a successful entrepreneur today, you must dare to think outside the box, and generally you can't do that on your own. You need a workplace that not only gives talented people room to think, but also brings them together. Campus West is that place.
Here, you’ll discover a vibrant business community in which past limits are shifted, so that you can do the same with your business. Come here and work in a relaxed yet stimulating environment that provides the freedom for creativity. And, above all, let yourself be inspired by the people around you, and make good ideas even better.
The power of synergy
How do we help businesses to innovate? This was the question we posed to ourselves as we pored over our plans. Elegant architecture and green surroundings are one thing, but how do you create an environment in which every nook and cranny invites inspiration?
We found the answer by pulling down old fences and making room for an open, green park. As a result, we created an open campus for open-minded workers – people who tomorrow dare to look further than today. In Campus West, your destination is not a drowsy office, but a community of like-minded innovators. Meeting someone with an idea that appeals to you is almost a given here.
Room for growth
The whole philosophy of innovative connections is made concrete in the architecture. Take the winding boulevard that runs between the buildings, opening new perspectives at every corner. An ideal location for open-air gatherings, networking drinks and food-truck festivals. We shall even be building an amphitheatre for events and product launches. And you can feel the power of synergy inside, too. We hook up all our businesses and take care of their needs with a service centre offering concierge services, catering, and bank and postal services, and a delivery corner. This means there is more time and energy left for you to focus on the really important things:
innovating and pushing back boundaries, for instance, something you can do best in an environment that moves with you.
In Campus West, you can be sure that your office space will grow with your turnover – and you’ll never pay for a single square metre more than you need. Start off in a co-working space or rent business premises of up to 16,000 m2. It's all possible here. Do you have specific requirements such as laboratory spaces, work-shops or an attractive meeting place? You just have to ask.
Inspirational surroundings
Creativity and innovation shine brightest in an atmosphere of relaxation. Our architects contributed to this by creating an elegant Scandinavian design that is perfectly integrated with the serenity of the surroundings. This combination does something to your mind, it calms your thoughts and lays a firm foundation for your imagination.
We also linked that inspiring quality with the immediate environment. Let your thoughts wander in the Middenvijver, an urban green space with more than eight hectares of walking- and hiking trails. In consultation with the city of Antwerp, we created our own Campus West fit-ness trail here. You can explore the Galgenweel, a beautiful lake that is famous for its yachting. When office hours are over, you can kick back in the top-class restaurant at work or in one of the cafés on the cam-pus. And, if you need a change, just five minutes away from Campus West you can enjoy lots of fashionable cafés in the centre of Antwerp.
Put your business on the map here
In Campus West, you not only inspire yourself and your employees, you also inspire your customers. It’s impossible to imagine a work-place where every square centimetre is more inviting for visitors than here. The conference rooms are state of the art and have a real appeal, and the catering-facilities deliver top-quality food and drink, from coffee breaks to business dinners.
With all the opportunities for cross-pollination on the campus itself, you’ll almost forget how well your new workplace is connected to the rest of the world. Campus West is close to the three main junctions on the Oosterweel Link. Thanks to a new exit complex that is currently being worked on, you can be on your way to anywhere in the country in no time. Both your staff and your customers can be in the Groen-plaats, in the centre of Antwerp, in five minutes by tram. Cyclists will delight in a green and tranquil cycle path network, covered bike sheds, lockers and showers.
An open space for bold ideas
Campus West is entirely designed so that people with boldness and talent can get the best from themselves and each other. The best thing about is that you are not only investing in the future of your own company but also in that of the people you collaborate with. Campus West is not simply a place that invites unexpected insights and collaborations but, above all, it is also an exceptionally lovely place to work. You can see that every day in the atmosphere in the workplace, in the taste of the perfect latte or cappuccino from the bar, or the spring sun shin-ing through all the greenery around you. You can see it in yourself and in each other.
In Campus West, you are giving yourself, your employees and your customers a place where you can all flourish. You are giving yourself all the space you need for growth and inspiration. And, if you have any ideas that you would like to share with us, please do not hesitate to contact us!
More
Less
Übersetzerische Ausbildung
Graduate diploma - CIoL
Erfahrung
Übersetzungserfahrung in Jahren: 19. Angemeldet bei ProZ.com seit: Sep 2005. Mitglied seit: Jan 2019.
Italienisch > Englisch (Chartered Institute of Linguists, verified) Französisch > Englisch (Chartered Institute of Linguists, verified) Deutsch > Englisch (University of Leeds, verified) Niederländisch > Englisch (Chartered Institute of Linguists, verified)
Help or teach others with what I have learned over the years
Lebenslauf
When you work in the fields of architectural lighting and sustainable building, the quality of your products is of paramount importance to you and your customers. Outstanding products deserve communication that is equally outstanding and that transmits an impression of quality (through the look and tone but also through accurate grammar and punctuation) to the reader. This becomes ever-more important as the first place potential customers will "see" products is increasingly online.
Before becoming a professional translator, I worked in Italy for 15 years, in the international marketing and advertising departments of Olivetti, a major Italian office equipment manufacturer. My activities there gave me insight into the communication needs of manufacturers, particularly manufacturers of products that improve people's quality of life, either because they are aesthetically appealing or because they help the environment in some way.
Excellent communication is a driving force throughout my life, which is why I also teach on an MA translation course at the University of Westminster and spend my free time both onstage and backstage at a local theatre group – South London Theatre in West Norwood.
In addition to a first degree in German, I hold CIOL Diplomas in Translation from Italian, French and Dutchinto English. I am also a certified member of both the ITI and the CIOL, and a Chartered Linguist.